Towards Machine Learning for Personalized Healthcare

SANMI KOYEJO
CS & BECKMAN @ILLINOIS
What does it take to build an effective machine learning system for healthcare?
<table>
<thead>
<tr>
<th>Enabling Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling</td>
</tr>
<tr>
<td>• (Brain) dynamics, longitudinal tracking, diagnosis</td>
</tr>
<tr>
<td>• Applications: Glioma segmentation, Cancer phylogenetics</td>
</tr>
<tr>
<td>Evaluation</td>
</tr>
<tr>
<td>• Selecting good metrics for machine learning</td>
</tr>
<tr>
<td>• Training models that optimize specialized metrics</td>
</tr>
<tr>
<td>Privacy</td>
</tr>
<tr>
<td>• Data synthesis, learning with aggregated data</td>
</tr>
<tr>
<td>• Learning on the edge</td>
</tr>
<tr>
<td>Trust</td>
</tr>
<tr>
<td>• Explainability and interpretability using examples</td>
</tr>
<tr>
<td>• Individual recourse</td>
</tr>
</tbody>
</table>
Privacy-preserving technology for healthcare ML
Synthesizing medical images using generative adversarial networks
Applications to private data release and rare-event simulation

Collaborators
@Illinois: Ishan Deshpande, Alex Schwing, Peiye Zhuang, David Forsyth
@Dupage: Nasir A. Siddiqui, Ayis T. Pyrros
Synthetic

Real

Joint work with Ishan Deshpande, Alex Schwing, Ayis Pyrros, Nasir Siddiqui, RSNA 2018
Experienced radiologists were asked to choose which of a real lung x-ray and a GAN generated image were real. Subjects favored real images slightly (on average GAN images were identified as real 39% of the time) but subject behavior varied widely. Size of blob identifies number of pairs viewed; note one subject preferred GAN images over 80% of the time, another could identify real images nearly exactly.
Generative Models

Source: https://blog.openai.com/generative-models/
Synthesis at native resolution $\sim 1024^2$ pixels
Synthesizing front and side X-rays
Co-generation (Front => Side, <=)
Synthesizing functional MRI

a) Real

b) GMM

c) CVAE

d) ICW-GAN
Application: classifier data augmentation

<table>
<thead>
<tr>
<th>Input</th>
<th>Gen. model</th>
<th>Classifier Accuracy</th>
<th>Macro</th>
<th>F1</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>-</td>
<td>SVM</td>
<td>0.8181</td>
<td>0.82</td>
<td>0.8333</td>
<td>0.8133</td>
</tr>
<tr>
<td>Real+noise</td>
<td>-</td>
<td>SVM</td>
<td>0.8185</td>
<td>0.82</td>
<td>0.8367</td>
<td>0.82</td>
</tr>
<tr>
<td>Real+Synth. GMM</td>
<td>SVM</td>
<td>0.8188</td>
<td>0.82</td>
<td></td>
<td>0.8366</td>
<td>0.82</td>
</tr>
<tr>
<td>Real+Synth. CVAE</td>
<td>SVM</td>
<td>0.8248</td>
<td>0.8267</td>
<td></td>
<td>0.8367</td>
<td>0.8233</td>
</tr>
<tr>
<td>Real+Synth. ICW-GAN</td>
<td>SVM</td>
<td>0.8311</td>
<td>0.83</td>
<td></td>
<td>0.8433</td>
<td>0.8333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input</th>
<th>Gen. model</th>
<th>Classifier Accuracy</th>
<th>Macro</th>
<th>F1</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>-</td>
<td>DNN</td>
<td>0.852</td>
<td>0.857</td>
<td>0.872</td>
<td>0.8523</td>
</tr>
<tr>
<td>Real+noise</td>
<td>-</td>
<td>DNN</td>
<td>0.8581</td>
<td>0.856</td>
<td>0.8719</td>
<td>0.8579</td>
</tr>
<tr>
<td>Real+Synth. GMM</td>
<td>SVM</td>
<td>DNN</td>
<td>0.8604</td>
<td>0.8631</td>
<td>0.8749</td>
<td>0.8604</td>
</tr>
<tr>
<td>Real+Synth. CVAE</td>
<td>SVM</td>
<td>DNN</td>
<td>0.8684</td>
<td>0.869</td>
<td>0.8827</td>
<td>0.8683</td>
</tr>
<tr>
<td>Real+Synth. ICW-GAN</td>
<td>SVM</td>
<td>0.8799</td>
<td>0.8825</td>
<td></td>
<td>0.8933</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Privacy Preserving Federated ML

Collaborators
@Illinois:
Cong Xie,
Indy Gupta
Federated ML

- ML models can be trained and deployed in distributed settings without transferring data
- Distributed learning amortizes training costs, learns without data sharing
- When implemented correctly, distributed learning preserves privacy and is robust to failures
What are the properties of ML with distributed data?

- **unbalanced, non-IID device data**
- **limited, heterogeneous device computation**
- **infrequent task scheduling**
- **limited, infrequent communication, congestion**
- **untrusted devices and data poisoning**
Workers compute updated local model parameters, no need to share data.
Robust aggregation enables learning with failures.
5-layer CNN, Unbalanced data, 100 devices

Performance vs # Gradients: Max staleness of 4, with Poly and Hinge temporal smoothing
Modeling complex high-dimensional data
Glioma Segmentation

Collaborators
@Illinois: Chase Duncan, Peiye Zhuang, Brad Sutton
@Jump: Matt Bramlet
@OSF: Deepak Nair
Glioma Segmentation Workflow

INPUTS
- **Standard Brain**, T1/T2 with contrast (DICOM)
- **Functional MRI**, DICOM and jpeg (processed in NordicNeuro?)
- **Language, Motor**, DTI
- **DTI**, DICOM and streamlines (Processed in BrainPath?)

PROCESS
- **Machine Learning Code**
 - Autoseg tumor (enhance region, necrotic, edema, non-tumor)
 - Gray/white matter
- **3D Activation maps**
 - Pull out activations from subject and normative data. Use DICOM to reassemble volume. Image registration required. Visualization overlay only
- **3D Streamlines for Tracts**
 - Group sets of tracks into tubes for visualizing large fiber bundles. Image registration required. Visualization only.

OUTPUTS
- **Labeled Tumor**
 - Enhance/necrotic/edema
 - Gray/White
 - In 3D STL’s
- **Activation regions**
 - 3D map of activation overlays: Subject and population average
- **3D Tubes**
 - Main fiber pathways, subject specific.

Picture modified from: Mukherjee, Berman, Chung, Hess, Henry. AJNR, 2008, 29(4): 632-41
Problem formulation & approach

- Label each voxel as tumor vs. not tumor
- We use a variation of the U-net with improved regularization
Enhancing tumor: prediction vs. ground truth
Tumor core: prediction vs. ground truth
Elucidating Patterns of Cancer Evolution

- Sequencing is used to measure mutations in patients
- **Goal:** Resolve ambiguity and recover evolutionary patterns, i.e., phylogenetic tree
- Clustering patients based on evolutionary trees resolves shared patterns, enables targeted treatments
Evaluating performance and model selection
Choosing the right metrics for healthcare ML

Collaborators
@Illinois:
Gaurush Hiranandani
Shant Boodaghians
Ruta Mehta
Positive = Healthy; Negative = Alzheimer’s

- False positive rate = Predict healthy when patient has Alzheimer’s = 90%
- False negative rate = Predict Alzheimer’s when patient is healthy = 5%

Accuracy = 94.1%

Image Source: https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351
- False positive rate = Predict healthy when patient has Alzheimer’s = 10%
- False negative rate = Predict Alzheimer’s when patient is healthy = 20%

Accuracy = 80.1%
Prevalence of Alzheimer's disease is <1% of the population*

False positive rate = Predict healthy when patient has Alzheimer’s = 100%

False negative rate = Predict Alzheimer’s when patient is healthy = 0%

Accuracy = 99%

* https://www.alz.org/facts/
Which ML model should you use?

- 94.1% Accuracy
 - 90% false positives
 - 5% false negatives

- 89.6% Accuracy
 - 50% false positives
 - 1% false negatives

- 80.1% Accuracy
 - 10% false positives
 - 20% false negatives

- 99% Accuracy
 - 100% false positives
 - 0% false negatives

Always Predict Healthy
It depends... on the relative cost/benefit of different kinds of errors.

The **metric** is a quantitative description of tradeoffs -- used to compare models, or optimized directly.
sklearn.metrics: Metrics

Regression metrics

See the [Regression metrics](#) section of the user guide for further details.

- `metrics.explained_variance_score (y_true, y_pred)`: Explained variance regression score.
- `metrics.mean_absolute_error (y_true, y_pred)`: Mean absolute error regression.
- `metrics.mean_squared_error (y_true, y_pred)`: Mean squared error regression.
- `metrics.mean_squared_log_error (y_true, y_pred)`: Mean squared logarithmic error regression.
- `metrics.median_absolute_error (y_true, y_pred)`: Median absolute error regression.
- `metrics.r2_score (y_true, y_pred)`: R^2 (coefficient of determination).

Clustering metrics

See the [Clustering performance evaluation](#) section of the user guide for further details.

The `sklearn.metrics.cluster` submodule contains evaluation metrics for cluster analysis results. There are two forms of evaluation:

- supervised, which uses a ground truth class values for each sample.
- unsupervised, which does not and measures the ‘quality’ of the model itself.

Multilabel ranking metrics

See the [Multilabel ranking metrics](#) section of the user guide for further details.

- `metrics.coverage_error (y_true, y_score[, ...])`: Coverage error measurement.
- `metrics.label_ranking_average_precision_score (y_true, y_score[, ...])`: Compute ranking-brier score.
- `metrics.label_ranking_loss (y_true, y_score)`: Compute Ranking loss.

Other metrics

- `metrics.adjusted_mutual_info_score (...[, ...])`: Adjusted Mutual Information between two clusterings.
- `metrics.adjusted_rand_score (labels_true, ...)`: Rand index adjusted for chance.
- `metrics.calinski_harabaz_score (X, labels)`: Compute the Calinski and Harabaz score.
- `metrics.davies_bouldin_score (X, labels)`: Computes the Davies-Bouldin score.
- `metrics.completeness_score (labels_true, ...)`: Completeness metric of a cluster labeling given a ground truth.
- `metrics.cluster.contingency_matrix (...[, ...])`: Build a contingency matrix describing the relationship between labels.
- `metrics.fowlkes_mallows_score (labels_true, ...)`: Measure the similarity of two clusterings of a set of points.
- `metrics.homogeneity_completeness_v_measure (labels_true, ...)`: Compute the homogeneity and completeness and V-Measure scores at once.
- `metrics.homogeneity_score (labels_true, ...)`: Homogeneity metric of a cluster labeling given a ground truth.
- `metrics.mutual_info_score (labels_true, ...)`: Mutual Information between two clusterings.
- `metrics.normalized_mutual_info_score (y_true, ...)`: Normalized Mutual Information between two clusterings.
- `metrics.silhouette_score (X, labels[, ...])`: Compute the mean Silhouette Coefficient of all samples.
- `metrics.silhouette_samples (X, labels[, metric])`: Compute the Silhouette Coefficient for each sample.
- `metrics.v_measure_score (labels_true, labels_pred)`: V-measure cluster labeling given a ground truth.
Metric Elicitation

Efficiently query an expert to quantify utility of ML models.
Querying the expert

Experts are often inaccurate when asked to quantify value

\[\phi(\text{[image]} = ? \]

\[\phi(\text{[image]} \text{ vs. } \phi(\text{[image]} = ? \]

EXPERTS ARE OFTEN INACCURATE WHEN ASKED TO QUANTIFY VALUE
Goal: accurately elicit the expert’s metric using a few pairwise queries

TWO MANY QUERIES MAY RESULT IN FATIGUE
Example: Binary Classification, Linear Metrics

- Binary search elicitation provably recovers the expert’s weighted metric:

\[\phi^* = 1 - (a_1^* \text{FP} + a_2^* \text{FN}) \]

- Guaranteed to be \(\epsilon \) accurate after \(\mathcal{O}(\log(\frac{1}{\epsilon})) \) queries
- Achieves the theoretical optimal elicitation rate
- Stable to system noise e.g. noisy responses from the expert

Hiranandani, Boodaghians, Mehta, K. (2019) x2
Explainability and Trust

Metrics

Data

Models and Computation
Interpreting Machine Learning Using Examples

Collaborators
@Vector: Shalmali Joshi
@Berkeley: Rajiv Khanna
@Google: Been Kim
@Texas: Joydeep Ghosh
Why do we care about transparency and interpretability in ML?

For ML experts:
- debugging trained models.

For healthcare professionals:
- the key to discovery e.g. scientific applications,
- useful for detecting failure and corner cases.

For everyone else:
- ensure that predictions are fair, non-discriminatory,
- actionable recourse i.e. how do I change the prediction outcome?
What is the smallest “realistic” change in input that modifies the model prediction?

- Probing healthcare ML systems for counterfactuals
- Components
 - generative model of data distribution
 - algorithmic decision, i.e., classifier
 - constrained optimization to identify recourse
Enabling Technologies

- **Modeling**
 - (Brain) dynamics, longitudinal tracking, diagnosis
 - Applications: Glioma segmentation, Cancer phylogenetics

- **Evaluation**
 - Selecting good metrics for machine learning
 - Training models that optimize specialized metrics

- **Privacy**
 - Data synthesis, learning with aggregated data
 - Learning on the edge

- **Trust**
 - Explainability and interpretability using examples
 - Individual recourse
Thank you

sanmi@Illinois.edu
@sanmikoyejo